Naturally Occurring Distributions

Donna Dietz

American University
dietz@american.edu
STAT 202 - Spring 2020

Distributions

Which of these distributions can be used to represent naturally occurring events?

- Normal Distribution
- Binomial Distribution
- Hypergeometric Distribution
- Poisson Distribution

Which get(s) the most attention?

More awareness please

We use the Normal distribution perhaps more than we should. We now live in a technological world full of computers! We don't need to rely on Normal approximations to distributions, because we can just calculate whatever we want to! But, for whatever reason, we seem to be stuck in the last century, back when students had to calculate square roots by hand if they didn't have a slide rule.

Excursions

This set of excursions is designed to introduce you briefly to the actual distributions which are so often ignored, even though they drive much of our analysis! We push them away and use their Normal approximations instead, without even giving them a chance to introduce themselves first!

Walk-through

These slides will walk through the excursions which are nearly the same as the ones on the worksheets. The ones on the worksheets have different numbers in them.

Sampling without replacement

How to get to Urn Sampling in StatCrunch

Sampling without replacement

Selections: 5 Red, 5 Green, draw 5 balls without replacement. Clicking "1000 runs" ten times gives 10,000 runs.
Results: 42, 950, 3975, 4002, 997, 34 (histogram bar heights)

Sampling without replacement

Hypergeometric Calculator

These are the expected values for the experiment we just did: Bar heights: $0.4 \%, 9.92 \%, 39.68 \%, 39.68 \%, 9.92 \%, 0.4 \%$.
Compare with the last slide to see how well the experiment worked!

Sampling WITH replacement

The only difference in StatCrunch is to check this box!

Sampling WITH replacement

Results: 305, 1619, 3086, 3195, 1496, 299 (histogram bar heights)

Sampling WITH replacement

Expected values for the previous experiment: Bar heights: $0.03125,0.15625,0.3125,0.3125,0.15625,0.03125$. Compare with the last slide to see how well the experiment worked!

Waiting for events

In this next experiment, we will wait for a random event that happens about 3 times per hour, or roughly every 20 minutes. This means several things: Each minute has roughly a 5% chance of having an event, and also, the average wait time is 10 minutes.

The average wait time is interesting. Think about it. If you are waiting for this random event, but you've been waiting an hour, it's still just as likely as if you just started waiting! If you have been waiting, and a friend comes to wait with you, you are both still experiencing the same remaining expected wait, right? Strangely, you may feel the event will never happen. But eventually it does!

Simulating this event

We will simulate this event by the minute, but grab 60 of them at a time and add the success cases together.
Data $>$ Simulate $>$ Binomial

Results

A quick average verifies that our average is close to 3 , which is what we asked for. This shows what we can expect in terms of events per hour.

Another simulation

But let's say we want to talk about this crazy wait time after all. What is THAT all about?
Let's simulate this thing and count the wait times between events!

Counting wait time by hand

This is not as hard as it seems, because you can just use an empty column to keep track of the counts. You can leave as much space as you wish between entries. StatCrunch doesn't mind at all! Don't count off the last set of zeros unless it ends in a 1 .

A really small and pathetic distribution

With such a small sample, this is not likely to really help us much. But this is what the histogram of the wait times looked like.

Siméon Denis Poisson (1781-1840)

This is what we were really trying to do! It's a Poisson distribution! (That would be French for "Mr. Fish", not 'poison' as students sometimes say.)

In this case, the 10 is because our average wait time will be 10 minutes, which is half the time between expected events.

Poisson Simulation Results

After building a histogram (and forcing width=1) it's easy to highlight the bars you want. Clear to start over with the pink highlighting.

Poisson Simulation Results

288 rows Clear
After building a histogram (and forcing width=1) it's easy to highlight the bars you want. Clear to start over with the pink highlighting.

MEMORY QUESTION

STAT 202 Memory Questions

```
Combined Sets 
To sign the log and earn credit, you need to work the combined set. You are allowed a maximum of
7errors. You need to get }50\mathrm{ right in }13\mathrm{ minutes.
Click all correct answers, then click submit:
```

Are natural phenomena usually easily modeled with normal distributions?

Sometimes.

Almost always.

There are lots of other distribution families you can look up and use for that!

STAT 202 Memory Questions

```
Combined Sets 
To sign the log and earn credit, you need to work the combined set. You are allowed a maximum of
7errors. You need to get }50\mathrm{ right in }13\mathrm{ minutes.
Click all correct answers, then click submit:
```

Are natural phenomena usually easily modeled with normal distributions?

Sometimes.

Almost always.

There are lots of other distribution families you can look up and use for that!

