Confidence Intervals for a Proportion

Donna Dietz
American University
dietz@american.edu
STAT 202 - Spring 2020

Binary (Binomial) Experiments

Recall: Binary (Binomial) Experiments

$$
\begin{gathered}
\mu=n p \\
\sigma=\sqrt{n p(1-p)}
\end{gathered}
$$

Where μ is the expected number of success cases in n trials, each having a success probability of p. Of course σ is the standard deviation, but it is for the μ above.

We still have to avoid $n p<10$ and $n(1-p)<10$ as before.

What if we want the proportion?

If instead of looking at the total success count, we wish to consider the expected success proportion, we know how to do that! Just divide the entire distribution by n, right?

$$
\begin{gathered}
\mu=p \\
\sigma=\frac{\sqrt{n p(1-p)}}{n}=\sqrt{\frac{p(1-p)}{n}}
\end{gathered}
$$

We still have to avoid $n p<10$ and $n(1-p)<10$ as before.

95\% Confidence Interval

Then, if we want the 95\% Confidence Interval

$$
\begin{gathered}
\mu \pm 2 \sigma \\
p \pm 2 \sqrt{\frac{p(1-p)}{n}}
\end{gathered}
$$

Which means that we can expect around 95% of the time:

$$
p-2 \sigma \leq \hat{p} \leq p+2 \sigma
$$

So, let's experiment!

Let's try this 10,000 times!

- Pick a p, and some $10 \leq n \leq 120$
- Run the experiment, find the wins and \hat{p}
- Calculate the 95\% Confidence Interval
- See if you've captured the true proportion
- See if $n p<5$ and $n(1-p)<5$
- And again for 10,15 , and 20.

Results!

We failed quite a lot! Why?

Results

experiments.txt

StatCrunch $\stackrel{2}{2}^{2}$ Applets * Edit * Data * Stat * Graph *

A plot of p versus \hat{p} values.

Note: $\hat{p}=0$ and $\hat{p}=1$ can happen. $p=0$ and $p=1$ can't. Look at lines 234 and 239. Here, the line shown is an LSR line.

Lesson

So, a low n or a low or high p (or both) can trigger this type of thing. Look at the collections of dots where $p=0$ and $p=1$ in the previous slide.

Results

This basically shows that $\hat{p}=0$ and $\hat{p}=1$ are not very meaningful. (This is a $p=\hat{p}$ line, not an LSR line.)

Results

What if we only eliminate cases where $n p \leq 5$ or $n(1-p) \leq 5$?

Results

That pretty much gets rid of most of the problem, but let's just look at the progression anyhow, to see how much more we cut down on the issues if we increase that threshold.

Results

What if we eliminate cases where $n p \leq 10$ or $n(1-p) \leq 10$?

Results

What if we eliminate cases where $n p \leq 15$ or $n(1-p) \leq 15$?

Results

What if we eliminate cases where $n p \leq 20$ or $n(1-p) \leq 20$?

Lesson

Of course we are progressively getting rid of bad cases, but we're also making it much harder to find low or high p values. What if we tried trimming this a different way?

Results

It looks like we could just eliminate small samples and trim this just as well! (The blue and red dots are farthest away from the $p=\hat{p}$ line.)

Results

It looks like we could just eliminate small samples and trim this just as well! (The blue and red dots are farthest away from the $p=\hat{p}$ line.)

Results

Regardless of how we trim this, we get rid of perfectly good intervals as well!

Results

Look at what we tossed out with this size restriction!

Conclusions

Since the shape of the cloud of points appears to be roughly symmetric about the $p=\hat{p}$ line, we should be able to take this formula:

$$
p-2 \sqrt{n p(1-p)} \leq \hat{p} \leq p+2 \sqrt{n p(1-p)}
$$

and turn it into:

$$
\hat{p}-2 \sqrt{n \hat{p}(1-\hat{p})} \leq p \leq \hat{p}+2 \sqrt{n \hat{p}(1-\hat{p})}
$$

(again at a 95\% confidence level).

Results

Note symmetry everywhere except $\hat{p}=0$ and $\hat{p}=1$.

Margin of Error

Margin of Error

The margin of error in the above formula is $2 \sqrt{n p(1-p)}$. The margin of error is half the size of your confidence interval.

Confidence Level

Confidence Level

The confidence level gives you a sense of roughly how likely you are to have captured the parameter you were after. But, you have to be very careful how to state this, or you risk getting it wrong.

There are many reasons to be careful about how you talk about the meaning of a confidence level, including the fact that you can never really eliminate design flaws.

A philosophical question

Many statisticians believe that you should never assign a probability to a confidence interval because once you do, you stop thinking in terms of: Maybe we captured it, maybe we didn't!

I like to parahprase it this way: You see two people sitting on a bench, talking closely to each other. Are they dating? Maybe! Maybe not! But you don't dare say, "There is a 95% chance they're dating!" because if they hear you, they may be very embarassed, and you may be as well! They either are or are not dating and that's that. This is how many statisticians like to think about confidence intervals.

Something we can all agree about that's accurate.

Confidence intervals for $\mathbf{p}, \mathbf{p}=\mathbf{0 . 5}$, Type $=$ Standard-Wald

Sample size:	30	100		1000 intervals	Reset	Analyze	Info	Sort grap			
Intervals	CI Level		Containing p		Total		Prop. contained				
78	0.95		96		100		0.96				
79											
80											
81											
82											
84					$\stackrel{\square}{i}$						
85											
86											
87				1							
88				\ldots							
89				".							
90				"							
91				$\cdots!$							
92				+	$\stackrel{\square}{\square}$						
93											
94				$\underline{=}$	$\stackrel{1}{1}$						
95				.	$\stackrel{+1}{\square+}$						
96				\dagger	\cdots						
97				=	$\underline{\square}$						
98				.							
99	0		0.2	0.4Intervals 1 to 100			0.8	I			
100											

With this same process, if we were to resample 100 times or 1000 times, on average, we would expect to capture the parameter 95% of the time if we are using a 95% confidence interval. We avoid attributing a probability of success to a single interval after it's been calculated.

Worksheet

The worksheet will guide you through some experiments, especially to showcase what happens with small sample sizes. You might be surprised!

Next, you'll run experiments with a partner (or small group) to see how well your confidence intervals capture the proportions.

We will find out how to determine a good sample size if you know your confidence level and margin of error.

ME, C-level, n: Pick any two!

You can pick any two of these three, and the remaining one is determined:

- Confidence-level (C-level)
- Margin of Error (M.E.)
- sample size (n)

Examples

$$
M E=z \sqrt{\frac{p(1-p)}{n}}
$$

If you want to increase your confidence level, you will either need to increase your sample size or increase your margin of error, or both.

If you want to decrease your margin of error, you will either need to increase your sample size or decrease your confidence level, or both.

If you want to decrease your sample size, you will either need to decrease your confidence level or increase your margin of error, or both.

Note: $z=1.96$ for 95% confidence-level and $z=2.576$ for a 99% confidence-level.

Finding n

We can use a little algebra to show that:

$$
n \geq \frac{p(1-p) z^{2}}{(M E)^{2}}
$$

This will be done in the worksheet! Always round up to the nearest integer, because you can't have part of a person!

Sample size surprise!

After you do a few excercises where you calculate the minimum required sample size, you'll find that to reduce the margin of error by a factor of 2 , you have to increase the sample size by a factor of 4 . To reduce the margin of error by a factor of 3, you'd have to increase the sample size by a factor of 9 . You can actually see why this works by looking at the formula!

$$
n \geq \frac{p(1-p) z^{2}}{(M E)^{2}}
$$

As such, it gets progressively harder to narrow the margin of error. Generally, most major public opinion polls are considered to be about as accurate as they are going to get, once they hit around 500 to 1000 responses.

A nice article

https://www.scientificamerican.com/article/howcan-a-poll-of-only-100/ Is a good read!

Andrew Gelman explains that a sample size of 250 will give a margin of error of 6%, for example, but a sample size of 100 will only give a 10% margin of error, so it's not very useful to most people. He explains that although you could make a grab for higher accuracy, there is not much point, because public opinion varies over time, so it would be very expensive and not generate useful information.

MEMORY QUESTIONS

STAT 202 Memory Questions

```
Combined Sets 
To sign the log and earn credit, you need to work the combined set. You are allowed a maximum of
7errors. You need to get }50\mathrm{ right in }13\mathrm{ minutes.
Click all correct answers, then click submit:
```


What is a sampling distribution?

It is the distribution for one sample of the specified \mathbf{n}-value.

It's the new distribution of sample means you would get if you could sample infinitely from your population.

It's the distribution for one sample with a very large (infinite) size.

It's a distribution of sample sizes.

SUBMIT

STAT 202 Memory Questions

```
Combined Sets 
To sign the log and earn credit, you need to work the combined set. You are allowed a maximum of
7errors. You need to get }50\mathrm{ right in }13\mathrm{ minutes.
Click all correct answers, then click submit:
```


What is a sampling distribution?

It is the distribution for one sample of the specified \mathbf{n}-value.

It's the new distribution of sample means you would get if you could sample infinitely from your population.

It's the distribution for one sample with a very large (infinite) size.

It's a distribution of sample sizes.

SUBMIT

STAT 202 Memory Questions
Combined Sets \sim

You and your friend each draw a random sample from a common population and create two different 95\% confidence intervals. They don't even overlap! What can you conclude?

Neither of you captured the true value.

It's clear that one or both of you failed to capture the true value!

One of you captured the true value and the other one didn't.

Both of you captured the true value.

SUBMIT

STAT 202 Memory Questions
Combined Sets \sim

You and your friend each draw a random sample from a common population and create two different 95\% confidence intervals. They don't even overlap! What can you conclude?

Neither of you captured the true value.

It's clear that one or both of you failed to capture the true value!

One of you captured the true value and the other one didn't.

Both of you captured the true value.

SUBMIT

