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What we know

From our last discussion, we know that we can set up an interval that
surrounds the proportion we found in a sample, and that’s an estimator for
where we expect the proportion of the population to actually be.
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What we want

We would like to generalize this for any underlying distribution.
Proportions are very convenient because

• The distribution is simple: Two bars

• The population proportion must be between 0 and 1

• The properties of the Binomial problem help us analyse it

We don’t have those benefits generally, but we do get lucky anyhow.
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Let’s consider a different distribution

Maybe what you want is to recover the entire shape of the distribution.
Here is a quick example of what that could look like. The more samples
you take, the closer your sampling results will match the original
distribution.
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StatCrunch has a Spinner tool

Starting with an original distribution, turning it into a Spinner, then
running the Spinner 40 times, this is what StatCrunch looks like.
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Average of two

This is one example of taking forty samples of two. The second plot shows
the average of two spins.
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Average of four

This is what happened when I took forty samples of four. Notice that the
gaps are filling in, the middle is becoming fuller, and tails are starting to
form.
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Online Simulator

There is a cool online simulator at:
http://onlinestatbook.com/stat sim/sampling dist

You can pick a starting distrubution or use your mouse to mess up one of
theirs. Then, ask it to repeatedly draw from the distribution!
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CLT = Central Limit Theorem

One of the biggest theorems in Statisics is that pretty much any
distribution you may wish to start with, at least in the real world, can do
this. Pick your favorite distribution to start out with. Then take samples
of increasing size. So, if n = 100, you will probably already find that your
sample means form a nice bell-like curve. The higher n goes, the closer to
normal you will be.
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Bags of candy

I like to imagine bags of candy. The distrubtion of weights for your original
candy population can be just about anything, but then if you’re making
bags of candy, maybe 100 pieces per bag, randomly selected, then you
record the total weight of each bag, it’s that total (or average) for the
bags which will end up looking normal.
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So we can just be Normal, OK?

So, let’s transition a bit. Since any sampling distribution we might wish to
use will end up as a Normal distribution, we might as well start with one
that’s Normal.
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Comparing σ and s

If you recall, we have two standard deviations. We have the population
standard deviation or σ, and we have the (so-called) sample standard
deviation or s. How different are they anyhow? (Not too different!) Let’s
see!

12 / 50



Sampling from N(0, 1)

In StatCrunch, I randomly drew from N(0, 1) 100 times. This histogram
shows the results of those 100 draws using bins of 0.2. This is to give you
a sense of how close (or not) we got to having a mean of zero and
standard deviation of 1. Notice that we are fairly close, and also that σ
and s are very close.
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Let’s do it nine more times!

This is to give you a sense for what these things might look like, and how
different or similar various draws of 100 might be!
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Statistics for all ten samples of 100

You can see that in all cases, we got very close. You can also see that σ
(Unadj. std. dev.) and s (Std. dev.) are quite similar. Half the means are
positive and half are negative. For s, 6 are too high and 4 are too low. For
σ, it’s the same. They are off by around 1%, which is expected with
n = 100.
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For samples of size 10

When we lower the sample sizes, we find σ and s are farther apart, but the
sampling error is way more important than the difference between σ and s.
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Assumptions for using z-scores

So, before we proceed to the exercises, I need to inform you that we are
only going to use z-scores in one of two special situations. Otherwise, we’ll
use t-scores. (We’ll talk about this soon!)

The two cases which permit us to use z-scores are: If we are sampling
from a Normal Distribution, or if our sample size is large enough to
warrant it. This is dependent on your needed level of accuracy, and large
enough is probably somewhere between 100 and 1000.
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Formulas

Samples

If you take a sample of size n from a distribution with N(µ, σ), the sum of
those items looks like N(nµ, σ

√
n) and the mean of the collection looks

like N(µ, σ/
√
n).

Confidence Interval

For a distribution with N(µ, σ), for a sample of size n, 95% of the samples
should fall within ±1.96 standard deviations of the mean.

µ− 1.96(σ/
√
n) < x̄ < µ+ 1.96(σ/

√
n)
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Flipping the confidence interval!

Confidence Interval

For a sample of size n, 95% of the actual population mean is expected to
fall within ±1.96 sample standard deviations of the sample mean.

x̄ − 1.96(s/
√
n) < µ < x̄ + 1.96(s/

√
n)

For a 99% confidence interval, use 2.576 instead of 1.96.
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Example:

If you have a population which is known to be normally distributed and
have a mean of 100 and a standard deviation of 18, and you draw 36 items
in a sample, what is the 95% confidence interval for where you would
expect the sample mean to end up? (Feel free to use z∗ = 2 instead of
1.96.)
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Example:

If you have a population which is known to be normally distributed and
have a mean of 100 and a standard deviation of 18, and you draw 36 items
in a sample, what is the 95% confidence interval for where you would
expect the sample mean to end up?

100− 2 · 18/6 = 94 < x̄ < 106 = 100 + 2 · 18/6
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Example:

This time, presume you took a sample of size 49 and got a mean of 100
and a sample standard deviation of 14. What is your 95% confidence
interval for where you think the population mean would be?
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Example:

This time, presume you took a sample of size 49 and got a mean of 100
and a sample standard deviation of 14. What is your 95% confidence
interval for where you think the population mean would be?

100− 2 · 14/7 = 96 < µ < 104 = 100 + 2 · 14/7
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Hypotheses

Just as before when we did hypothesis testing with confidence intervals,
we need H0 to have an equal sign in it, and the HA to negate it.

Example

A dental school student makes a claim that the average person spends 45
seconds each day brushing their teeth. You get 100 students to agree to
secretly time their roommates brushing their teeth and report the times
back to you. You determine the average to be 50 seconds with a standard
deviation of 15 seconds.

In this example, H0 is µ = 45 sec and HA is µ 6= 45 sec . For this exercise,
you can create a confidence interval using the sample mean and sample
standard deviation to see if the hypothesized mean is inside.
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Answer:

50− 2 · 15/10 < µ < 50 + 2 · 15/10

47 < µ < 53

Since 45 is smaller than the lower edge of the interval, you can reject the
null hypothesis. Since you rejected it, you may now talk about direction.
A good way to rephrase the results would be to say, “Based on our study,
students here spend more than 45 seconds per day brushing their teeth.”

This is a great example of something that’s statistically significant but not
of any practical use, since the ADA recommends 2 minutes per day of
brushing, and 50 seconds is still far below that recommended guideline.
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Wikipedia Says...

William Sealy Gosset (13 June 1876 – 16 October 1937) was an English
statistician, chemist and brewer who served as Head Brewer of Guinness
and Head Experimental Brewer of Guinness and was a pioneer of modern
statistics. He pioneered small sample experimental design and analysis
with an economic approach to the logic of uncertainty. Gosset published
under the pen name Student and developed most famously Student’s
t-distribution – originally called Student’s ”z” – and ”Student’s test of
statistical significance”.
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William Sealy Gosset
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When z-scores aren’t enough

In roughly 1908, William Sealy Gosset figured out that when you have
small data sets, the Normal distribution doesn’t do a really good job at
making confidence intervals. The intervals you get by using z-scores are
too narrow. So, 95% confidence intervals would work far less than 95% of
the time, for example.

Gosset (under a pen name of Student) created new tables with more
conservative t∗ values. We call them t-scores and we call the table
Student’s Table.
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Degress of Freedom

The concept of degrees of freedom comes up repeatedly in math and
science. For this table, however, for the way we use it in this course, you
need only know that df means degrees of freedom and you simply subtract
one from the sample size. When you land on the table between two lines,
you fall back to the lower df value. The final line of Students Tables
reflects z-score values.

df = n − 1

Calculations done by computer will result in narrower confidence intervals,
as Student’s Table will give a more conservative or wider interval when
calculated by hand.
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Student Family of Curves

Note that the Student curves have thicker tails and don’t have quite as
high of a peak in the center. However, as sample size increases, this family
of curves converges to the Normal curve.
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Find the t∗ values

Just like you have z∗ values for creating confidence intervals, you also have
t∗ values. They work the same way as z∗ values.

Example: Find the 95% confidence interval based on a sample of size 27
that has a mean of 73 and a sample standard deviation of 16.
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Answer

Example: Find the 95% confidence interval based on a sample of size 27
that has a mean of 73 and a sample standard deviation of 16.

The t∗ value can be found in the Table in the row marked df 26 and the
column with a 95% at the bottom. That value is t∗ = 2.056. The
standard deviation of the sampling distribution is approximated by
16/
√

27. So the confidence interval would be:

73− 2.056 · 16/
√

27 < µ < 73− 2.056 · 16/
√

27

73− 2.056 · 16/
√

27 < µ < 73− 2.056 · 16/
√

27

66.67 < µ < 79.33
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On StatCrunch

You can look up the t∗ value on StatCrunch using:
Stat > Calculators > T
Enter df and cut off the top 2.5% to find t∗.
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Paper vs StatCrunch
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Whole process on StatCrunch

Stat > T Stats > One Sample > With Summary
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Sample Size

As before, we can determine the sample size needed for the confidence
interval based on the desired margin of error and confidence level.

n ≥ z2s2

(ME )2

n ≥ t2s2

(ME )2
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From data

To calculate a confidence interval based on data, place it in a single
column in StatCrunch.

Stat > T Stats > One Sample > With Data
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6 MEMORY QUESTIONS
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